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Accuracy in seasonal-to-interannual climate forecasts for the United States (US) remains 
a challenge.  This despite advances in understanding sources of climate variability and 
predictability as well as improvements in prediction tools. Our use of the tools has greatly 
improved in the past decade with the implementation of robust model bias correction and 
multi-modeling strategies. Furthermore, validation measures have become more 
sophisticated, rating the performance of forecast systems in a manner more consistent 
with the probabilistic world they describe. Still, further room for improvement exists. 
This article outlines the current practices of seasonal-to-interannual climate prediction: 
current understanding of the sources of variability, the tools used to predict it, common 
methodologies applied to those tools to produce forecasts, and relevant verification 
analyses with which to judge the performance of the forecasts. These are forecasts of 
opportunity, which if used prudently have potential to benefit decision-making. 
 
Background 
 
Before discussing current prediction practices and their accuracies, it is important to 
distinguish between prediction and predictability itself.  The latter is a physical 
characteristic of the natural system, and is not altered by forecasting methodologies. The 
tools used to make forecasts are often employed in determining the theoretical limit of 
predictability, judging the model against itself, and as such predictability estimates can 
indeed change (for non-physical reasons) as models evolve. Nonetheless, it is often of 
interest to know how the current skill levels differ from the existing theoretical limits 
because such knowledge guides expectations for the skill impacts of improved practices. 
However, given the indeterminate nature of predictability estimates, this report focuses 
on skill estimates obtained by comparing model-derived forecasts with the observed 
climate, emphasizing seasonal mean surface temperature and precipitation variations over 
the US.  
 
Attributable causes of US seasonal climate variability 
 
Understanding US seasonal climate variability is essential for exposing the sources of its 
predictability. Seasonal forecasting (when done at the minimal 15-day lead times beyond 
which deterministic atmospheric predictions are skillful) is effectively the practice of 
predicting the climate signal due to external forcings.  These forcings include anomalous 
sea surface temperature (SST), soil moisture, sea ice, and chemical constituents.  The 
resulting climate predictability is known as predictability of the "second kind" or 2-tier, 
arising from the influence of specified boundary conditions on the atmosphere. For 
seasonal prediction practices using fully coupled Earth System models, the notion of such 
a 2-tiered system with external forcings vanishes, and predictability is of the "first kind" 
(ie 1-tier) arising solely from the initial Earth System conditions. It is important to note 
here that for seasonal prediction, longer-term changes of external forcing that is affecting 
the climate system, especially increasing greenhouse gasses, may be considered constant 



over the season, although their changes from year to year should probably be included in 
dynamical models. 
 
We will subsequently examine the skill of forecasts generated from both 1-tier and 2-tier 
systems. But, for purposes of discussing seasonal predictability, it is helpful to first 
consider the 2-tier system.  The climate responses to the specified external forcings 
constitutes the "signal", whose probability of occurrence (i.e. verification) depends upon 
the signal strength relative to seasonal "noise" arising from internal atmospheric 
variability.  Two approaches have been used to estimate such signals, and both focus on 
the contribution of SST anomalies to seasonal variability.  One involves analysis of 
historically observed SST anomalies and the accompanying global circulation and surface 
climate impacts. This approach is illustrated in the studies by Barnett (1981), Horel and 
Wallace (1981), Ward and Folland (1991), Barnston and Smith (1996), to name only a 
few.  An approximately correct atmospheric signal can be identified forced by the ENSO-
related SST anomaly pattern, and to a lesser extent by one or two more localized tropical 
SST patterns (Hastenrath, 1995; Anderson et al. 1999). The period of globally adequate 
observational analyses is just long enough to resolve differences in the relationships 
between different "flavors" of ENSO SST forcing and climate over the US (Larkin and 
Harrison, 2005), but the record is not long enough to robustly connect presently 
unrecognized non-ENSO-related SST forcings and US climate. In a second approach, 
atmospheric models are used to simulate US seasonal climate variations during the past 
half century These find that ENSO SSTA is the primary source of forecast skill related to 
ocean influences, and that in ENSO's absence, skill is largely absent (e.g. Goddard & 
Dilley 2005; Quan et al. 2006) (Figure 1).   Further research is required to better 
understand the role of non-ENSO ocean states in US climate variability. 
 
Additional open questions concern the signals related to land boundary conditions, sea 
ice states, and the influence of anomalous atmospheric chemical compositions on US 
seasonal climate.  Especially noteworthy is that no current dynamical practice for 
seasonal forecasting incorporates the direct effect of anomalous chemical composition, 
and it is unclear to what extent their implicit effect is already incorporated via ocean 
states.  Among a suite of empirical tools employed by NCEP in their operational seasonal 
forecasts, the trend of surface temperature has been found to explain a large fraction of 
US seasonal temperature variations during the past decades (Huang et al. 1996), and this 
tool explains the majority of US temperature forecast skill at lead times greater than 1 
season.  Yet, neither the strength, seasonality, nor regionality of such trends have been 
distinguished from possible transient decadal variations.   This leaves open the question 
on the best practice for including trends and their climatic forcings into seasonal 
prediction practices. 
 
Current prediction tools and methodologies 
 
The tools used for prediction, as mentioned above, include empirical models and 
dynamical models. Individually, empirical models continue to be competitive with 
dynamical models, which attests to the dominance of the linear ENSO signal as the 
primary skill source over the US. It is not clear if this will continue to be the case if 



anthropogenically induced changes in the mean state impact the expression of climate 
variability, such as the teleconnection responses to El Niño conditions in the tropical 
Pacific or even the expression of ENSO itself. Conversely, the extrapolation of trends by 
the empirical models has kept pace with the recent increases in the strength and spatial 
coverage of above-normal temperatures over the US better than the dynamical models 
used for seasonal prediction (not shown). The most notable change in the armory of 
prediction tools has been the increasing use of coupled general circulation models 
(CGCMs) over atmospheric general circulation models (AGCMs). In theory CGCMs are 
superior to AGCMs because the two-way interaction between ocean and atmosphere can 
proceed realistically; whereas in an AGCM the ocean does not respond to the 
atmosphere, which leads to unrealistic air-sea heat fluxes over most regions.  One 
exception is the ENSO region (i.e. near-equatorial Pacific) where the ocean largely forces 
the atmosphere interannually. US seasonal forecast skill obtained with AGCMs is 
expected to be comparable to that from CGCMs, because the currently realized skill in 
US terrestrial climate derives primarily from ENSO SSTA, To date, CGCMs still contain 
substantial biases in their representation of important boundary fields, such as SSTs. As a 
result, CGCMs currently do not out-perform AGCMs. That they have the potential to do 
so suggests possible future improvements to climate predictions as biases in CGCMs are 
diagnosed and minimized. 
 
Given the existing biases in prediction tools, considerable effort has gone into 
methodologies that can identify and reduce them. The simplest of these removes the 
mean bias of the model climatology, and casts the prediction as anomalies relative to 
some base period. More complex, though less generalizable methods attempt to spatially 
correct patterns of anomalous climate due to inadequately resolved topography, or poorly 
captured teleconnection responses (Landman & Goddard 2002, Tippett et al. 2003).  
Recently, efforts have focused on attempting to recalibrate the probabilistic response of 
the model (Doblas-Reyes et al. 2005).   
 
While these methodologies do improve individual model performance, one still finds that 
some climate signals are captured by some models and not others. This suggests that in 
addition to sampling the uncertainty arising from imperfect knowledge of initial 
conditions, the uncertainty arising from imperfect knowledge of the physical processes 
must also be sampled, specifically those represented through parameterizations. 
Substantial improvements in overall “predictionability” have been achieved through the 
combination of several models, so called multi-model ensembling (e.g. Robertson et al. 
2004). As will be shown below, since all models do not always share the same strengths 
and weaknesses, by combining them into a single probabilistic forecast the spatial 
coverage of positive skill increases, and negative skill is reduced. This improvement in 
skill has been shown explicitly to result from the increase in model number rather than 
just the increase in realizations (Palmer et al. 2000). Another important result of multi-
model ensembling is the dramatic improvement in the reliability in probabilistic 
forecasts. 
 
One implicit criterion for combining multiple models is that they all perform 
‘adequately’. If one model were found to be measurably worse than the others, it should 



be dropped. In some cases, the combination algorithm considers past performance of the 
models, assigning weights accordingly (Rajagopalan et al. 2001). Unfortunately 
performance weighting requires long histories (40+ years) of model forecasts in order to 
determine relative model performance robustly. This becomes a problem for most 
CGCMs used for seasonal prediction because the observational data required for their 
initialization does not exist prior to the 1980s. With only 20+ years of retrospective 
forecast data, it becomes difficult to assign meaningful weights to individual models. 
Methodologies for synthetically extending a retrospective forecast history or for 
combining models that could circumvent the limited model history and still allow for 
performance weighting could greatly improve the skill of the resulting forecasts.  
 
Forecast system validation 
 
Several measures of forecast validation exist, sometimes giving a different picture of 
where, when, and which prediction practice yields the most accurate forecasts. In general 
the use of more than one measure of validation is desirable, and in Fig. 1 we have already 
shown skill based on the rank probability skill score. In this section we highlight 
additional measures that provide valuable information about US prediction skill. The first 
is the area under the relative operating characteristic (ROC) curve. For a particular grid 
point or region, these curves indicate the percentage of hits and false alarms yielded by 
the forecast system for a given event (e.g. above-normal tercile category), under varying 
levels of confidence in the forecast. If the event were perfectly predictable by the forecast 
system, it would have a hit rate of 1.0 and no false alarms. The area under the curve 
would be 1.0. If the system were unable to distinguish between a hit and a false alarm, 
those rates would be equal, and the area under the curve would be 0.5, which is 
considered the level of no skill. Negative skill is indicated by values less than 0.5. What 
is particularly useful about ROC areas is that they can indicate condition skill, for 
instance, higher hit rates for the upper tercile category than the lower one. An example is 
shown in Figure 2, which illustrates that forecasts of above-normal temperature have 
witnessed higher skill than below-normal temperatures for the Dec-Jan-Feb season during 
the 1981-2001 period. Figure 2 also illustrates some of the other points raised in the 
previous section regarding AGCMs, CGCMs and multi-model ensembles.  In particular, 
there is little difference in skill of the AGCM versus CGCM practices, and the multi-
model combination of all dynamical systems exhibits the greatest skill. 
 
The second validation diagnostic of forecast performance we demonstrate is reliability. 
This measure is particularly important as it indicates the extent to which forecast 
probabilities mean what they say.  A striking characteristic of all dynamical models is 
that their probability forecasts are over-confident (Figure 3). There is no distinction 
between AGCMs and CGCMs in this shortcoming. Some improvement can be achieved 
by recalibrating the probability distributions of the individual models (not shown). The 
greatest improvements are obtained by combining the models, here accomplished by 
simply averaging the 3-category probabilities of the 8 CGCMs and the 3 AGCMs. There 
is a negative consequence of such a process, namely that the sharpness of the resulting 
forecasts is reduced (i.e., fewer high probability forecasts are indicated). Ideally, one 



wishes to retain as sharp as possible a forecast while ensuring reliability. Work continues 
towards this goal. 
 
Outstanding questions and room for improvement 
 
 What are core activities for improving climate forecasting practices?  Developing 
new models of the atmosphere-ocean-cryosphere-land system, ensuring sustained long 
term observations, enhancing data assimilation techniques, and improving understanding 
of seasonal climate variability are essential.  A commonly used metric for measuring the 
impact of such activities is the skill and reliability of forecasts.  In this report the skill 
attributes of existing and emerging dynamical methods of seasonal predictions have been 
examined.   
 
A relevant question concerns whether U.S. seasonal prediction skill is advancing with 
newer generation models. Considerable investment has been devoted towards improving 
climate models, in part for the purpose of advancing seasonal predictions.  Recent 
examples include new efforts to implement an updated global coupled forecast system 
with increased resolution and improved atmospheric and oceanic components at NCEP 
(to be called the Coupled Forecast System (CFS03)), with similar efforts underway at 
NASA/GMAO including their plan to use a global 1° resolution atmospheric model.  An 
implicit assumption behind such efforts is that newer generation dynamical models will 
lead to improved skill. We know, for example, that predictability exists in the extra-
tropical climate that the current generation of models are not realizing (Anderson et al. 
1999).  Analogies may also be drawn from weather forecasting experience where steady 
improvements in models and data assimilation techniques resulted in progressively 
improved weather predictions. It may be that the seasonal prediction models are presently 
neglecting some important external forcings, such as the increasing greenhouse gasses in 
the atmosphere, which can affect the characterization (and bias corrections) of the model 
climate over periods of years. Poorly represented interactions of the atmosphere with the 
land surface and with the cryosphere may also hamper the skill of seasonal predictions 
over the US. Another aspect of the climate system that is typically not well represented in 
the seasonal prediction models is the interaction between the stratosphere and 
troposphere (Baldwin and Dunkerton, 1999), which has demonstrated occasions of 
predictable evolution and subsequent influence on the terrestrial climate over the northern 
mid-latitudes. Even if the model development improves simulations of seasonal climate 
variability, seasonal prediction skill will nonetheless be limited by inherent signal-to-
noise considerations.   The relevant question becomes whether the new generation of 
dynamical models yield signal-to-noise ratios that more accurately reproduce those in 
nature.  It is therefore important to continually document and analyze the seasonal 
prediction skill from the improved dynamical prediction systems, and to cast those 
performances within improved knowledge of predictability limits.   
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Figure 1. Differences in skill (RPSS) for 3-category seasonal rainfall forecasts between 
ENSO extremes and neutral conditions for the 1950-1995 period. Positive values indicate 
higher skill during ENSO extremes. (from Goddard and Dilley, 2005) 



 
Figure 2. ROC areas for DJF temperature forecasts at 1-month lead for the period 1981-2001. The 
AGCM was forced by predicted SSTs. The multi-model forecast is based on equal weighting of 
3-category probabilistic forecasts from 8 CGCMs and 3 AGCMs. 
 



 
Figure 3. Reliability diagrams for the upper (Above-Normal) and lower (Below-Normal) category 
of 3-category forecasts for all terrestrial grid points over North America (140W-50W; 17.5N-
70N). The colored lines show the reliability of the individual models; the light green lines in the 
inset boxes show the frequency with which forecasts of a certain confidence were issued for that 
category. The black line shows the reliability for the multi-model forecast, and the dark green line 
in the inset graph shows the confidence frequency.  


